The FeMoco-deficient MoFe protein produced by a nifH deletion strain of Azotobacter vinelandii shows unusual P-cluster features.
نویسندگان
چکیده
The His-tag MoFe protein expressed by the nifH deletion strain Azotobacter vinelandii DJ1165 (Delta(nifH) MoFe protein) was purified in large quantity. The alpha(2)beta(2) tetrameric Delta(nifH) MoFe protein is FeMoco-deficient based on metal analysis and the absence of the S = 3/2 EPR signal, which arises from the FeMo cofactor center in wild-type MoFe protein. The Delta(nifH) MoFe protein contains 18.6 mol Fe/mol and, upon reduction with dithionite, exhibits an unusually strong S = 1/2 EPR signal in the g approximately 2 region. The indigo disulfonate-oxidized Delta(nifH) MoFe protein does not show features of the P(2+) state of the P-cluster of the Delta(nifB) MoFe protein. The oxidized Delta(nifH) MoFe protein is able to form a specific complex with the Fe protein containing the [4Fe-4S](1+) cluster and facilitates the hydrolysis of MgATP within this complex. However, it is not able to accept electrons from the [4Fe-4S](1+) cluster of the Fe protein. Furthermore, the dithionite-reduced Delta(nifH) MoFe can be further reduced by Ti(III) citrate, which is quite unexpected. These unusual catalytic and spectroscopic properties might indicate the presence of a P-cluster precursor or a P-cluster trapped in an unusual conformation or oxidation state.
منابع مشابه
Iron-molybdenum cofactor biosynthesis in Azotobacter vinelandii requires the iron protein of nitrogenase.
Nitrogenase is composed of two separately purified proteins called the Fe protein and the MoFe protein. In Azotobacter vinelandii the genes encoding these structural components are clustered and ordered: nifH (Fe protein)-nifD (MoFe protein alpha subunit)-nifK (MoFe protein beta subunit). The MoFe protein contains an ironmolybdenum cofactor (FeMo cofactor) whose biosynthesis involves the partic...
متن کاملComparison of iron-molybdenum cofactor-deficient nitrogenase MoFe proteins by X-ray absorption spectroscopy: implications for P-cluster biosynthesis.
Nitrogenase, the enzyme system responsible for biological nitrogen fixation, is believed to utilize two unique metalloclusters in catalysis. There is considerable interest in understanding how these metalloclusters are assembled in vivo. It has been presumed that immature iron-molybdenum cofactor-deficient nitrogenase MoFe proteins contain the P-cluster, although no biosynthetic pathway for the...
متن کاملThe chaperone GroEL is required for the final assembly of the molybdenum-iron protein of nitrogenase.
It is known that an E146D site-directed variant of the Azotobacter vinelandii iron protein (Fe protein) is specifically defective in its ability to participate in iron-molybdenum cofactor (FeMoco) insertion. Molybdenum-iron protein (MoFe protein) from the strain expressing the E146D Fe protein is partially ( approximately 45%) FeMoco deficient. The "free" FeMoco that is not inserted accumulates...
متن کاملStructural insights into a protein-bound iron-molybdenum cofactor precursor.
The iron-molybdenum cofactor (FeMoco) of the nitrogenase MoFe protein is a highly complex metallocluster that provides the catalytically essential site for biological nitrogen fixation. FeMoco is assembled outside the MoFe protein in a stepwise process requiring several components, including NifB-co, an iron- and sulfur-containing FeMoco precursor, and NifEN, an intermediary assembly protein on...
متن کاملNitrogenase MoFe protein from Clostridium pasteurianum at 1.08 Å resolution: comparison with the Azotobacter vinelandii MoFe protein
The X-ray crystal structure of the nitrogenase MoFe protein from Clostridium pasteurianum (Cp1) has been determined at 1.08 Å resolution by multiwavelength anomalous diffraction phasing. Cp1 and the ortholog from Azotobacter vinelandii (Av1) represent two distinct families of nitrogenases, differing primarily by a long insertion in the α-subunit and a deletion in the β-subunit of Cp1 relative t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 277 26 شماره
صفحات -
تاریخ انتشار 2002